

Journal of Alloys and Compounds 275-277 (1998) 27-29

Journal of ALLOYS AND COMPOUNDS

Crystal structure and magnetic properties of the $\text{RCo}_{5-x}\text{Ga}_x$ (x=1, 1.5, 2, 3, 4) and $\text{RCo}_{4-x}\text{FeGa}_x$ (x=1, 2) compounds (R=rare earth)

Ch. Routsi

Democritos University of Thrace, Electrical and Computer Engineering Department, Physics Laboratory, 67100 Xanthi, Greece

Abstract

X-ray powder diffraction data of the $\text{RCo}_{5-x}\text{Ga}_x$ compounds indicate that single-phase samples of the CaCu_5 type structure exist up to the composition RCo_3Ga_2 . The compounds with light rare earths are ferromagnets while those with heavy rare earths are ferrimagnets. The introduction of Fe into the $\text{RCo}_{5-x}\text{Ga}_x$ compounds has an important effect on the magnetic properties. © 1998 Elsevier Science S.A.

Keywords: Rare-earth ternary compounds; Crystal structure; Magnetic structure; Macroscopic magnetic measurements

1. Introduction

 RCo_5 compounds, with the hexagonal structure of $CaCu_5$ -type, play an important role in the research of rare earth–3d metal compounds, from both technological and fundamental points of view. Well-known examples are permanent magnet materials based on the RCo_5 family. As an extension of the research on RCo_5 , substituted $RCo_{5-x}Ga_x$ (x=1, 2, 4) systems have been published recently [1–4].

We have also reported on the magnetic properties of the $RCo_{4-x}FeGa_x$ (x=1, 2) compounds [5,6] because the introduction of iron atoms into the $RCo_{5-x}Ga_x$ compounds influences the magnetic properties markedly.

2. Crystal structure

 $\text{RCo}_{5-x}\text{Ga}_x$ compounds were prepared as described in Ref. [1]. For R=Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er with x=1, 1.5, 2, 3, and 4 analysis showed that single-phase compounds, crystallizing in the hexagonal CaCu₅-type crystal structure, form in this system only for $x\leq 2$. A similar type of patterns were also observed in the X-ray diagrams of the samples with x=3.0, although many other lines were present indicating that the samples probably are not single phase.

Finally, RCoGa₄ compounds (R=Ce, Pr, Nd) crystallize in the orthorhombic Cmcm space group [7]. The RCoGa₄ compounds with heavy rare earths do not form.

In RCo₅ compounds, with the hexagonal CaCu₅-type

0925-8388/98/\$19.00 © 1998 Elsevier Science S.A. All rights reserved. PII: S0925-8388(98)00267-9

structure there is one site for rare earth metals 1a(0,0,0) and two different cobalt sites,

 $2c(\frac{1}{3},\frac{2}{3},0)$

and

 $3g(\frac{1}{2},0,\frac{1}{2}).$

In RCo₄Ga and RCo₃Ga₂ compounds, there is one rare earth site, (a:0,0,0), but the Ga atoms prefer the 3g site in agreement with previous neutron diffraction investigations in RCo_{5-x}Ga_x compounds [8–10]. The unit cell parameters and the atom positions of TbCo_{5-x}Ga_x compounds are presented in Table 1 (Lazy-Pulverix program [11]).

The crystal structure for these compounds can also be described by a larger hexagonal unit cell derived from the CaCu₅-type stucture when the parameter a is increased by

Table 1	1	
CaCu ₅	type	structure

	Atom	Position	x	у	z	Occup.
TbCo₄Ga	Tb	1a	0.0	0.0	0.0	1
a=5.018	Co	2c	$\frac{1}{3}$	$\frac{2}{3}$	0	1
c = 4.022	Co	3g	$\frac{1}{2}$	Ő	$\frac{1}{2}$	0.67
	Ga	3g	$\frac{1}{2}$	0	$\frac{\tilde{1}}{2}$	0.33
TbCo _{3.5} Ga _{1.5}		a = 5.025	-	c = 4.063	2	
TbCo ₃ Ga ₂	Tb	1a	0.0	0.0	0.0	1
a=5.095	Co	2c	$\frac{1}{3}$	23	0	1
c = 4.085	Co	3g	$\frac{1}{2}$	Ő	$\frac{1}{2}$	0.33
	Ga	3g	$\frac{1}{2}$	0	$\frac{1}{2}$	0.67

Table 2 Larger cell

	Atom	Position	x	у	z	Occup.
TbCo ₄ Ga	Tb ₁	1a	0.0	0.0	0.0	1
a = 8.688	Tbu	2c	$\frac{1}{3}$	$\frac{2}{3}$	0.0	1
c = 4.025	Co	бј	$\frac{1}{3}$	0.0	0.0	1
	Co _{II}	6m	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	1
	Ga	3g	$\frac{1}{2}$	0.0	$\frac{\overline{1}}{2}$	1
TbCo _{3.5} Ga _{1.2}		a = 8.701	-	c = 4.069	-	
TbCo ₃ Ga ₂	Tb ₁	1a	0.0	0.0	0.0	1
a=8.827	Tbu	2c	$\frac{1}{3}$	$\frac{2}{3}$	0.0	1
c = 4.044	Co	бј	$\frac{1}{3}$	0.0	0.0	1
	Co _{II}	6m	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	0.5
	Ga	6m	$\frac{1}{6}$	13	õ.5	
	Ga ₁₁	3g	$\frac{1}{2}$	0.0	$\frac{1}{2}$	1

Fig. 1. Temperature dependence of magnetization up to 600 K for $GdCo_4Ga$ and $TbCo_4Ga$ compounds.

a factor of $\sqrt{3}$ [12,13]. In this case of a larger cell, comparison between observed and calculated intensity values showed the best agreement with the atomic positions presented in Table 2.

Neutron diffraction measurements on the TbCo₃Ga₂ compound [14] confirmed the atom position given in Table 2 but not the RCo₃Ga₂ atom position proposed by Fremy et al. [12]: R_I at 1b (0°,0°,0.5) R_{II} at $2C(\frac{1}{2},\frac{2}{3},0)$, Co_I at 3g(0.5,0.0,0.5) Co_{II} at 6m(0.1799,0.3598,0.5) and Ga at 6j(0.2895,0.0,0).

The lattice parameters of $\text{RCo}_{4-x}\text{FeGa}_x$ (x=1, 2) increase in relation to those of the $\text{RCo}_{5-x}\text{Ga}_x$ compounds. This is due to the fact that the ionic radius of Fe is greater than that of Co.

3. Magnetic measurements

The magnetic measurements of the $\text{RCo}_{5-x}\text{Ga}_x$ compounds were performed by a vibrating sample magnetometer for fields up to 20 kOe, while those of $\text{RCo}_{4-x}\text{FeGa}_x$ with a SQUID magnetometer in the temperature range 4.2–300 K and with a vibrating sample magnetometer in the temperature range 300–1200 K for magnetic fields of 1–20 kOe.

 RCo_4Ga compounds show ferromagnetic behaviour for light rare earths, while the compounds with heavy rare earths are ferrimagnets (Fig. 1).

RCo₃Ga₂ compounds show ferromagnetic behaviour, while neutron diffraction on powdered samples of

Fig. 2. Neutron diffraction diagram fo TbCo₃Ga₂ at 4 K.

Fig. 3. Neutron diffraction diagram of TbCo₃Ga₂ at 250 K.

TbCo₃Ga₂ showed that the magnetic structure at 4 K is collinear ferrimagnetic with the magnetic moment of terbium (7 $\mu_{\rm B}$) and cobalt (-0.4 $\mu_{\rm B}$) sublattice in opposite directions perpendicular to the *c*-axis [14] Fig. 2 Fig. 3.

This result is in agreement with the fact that the TbCo_5 and TbCo_4Ga compounds have, as the easy plane of magnetization at low temperature, the plane normal to the *c*-axis [15,16], in accordance with a recent publication that the easy magnetization direction of GdCo_3Ga_2 is perpendicular to the *c*-axis [17].

The $RCoGa_4$ compounds (R=Ce, Pr, Nd) present paramagnetic behaviour down to 4.6 K [4].

Gallium substitution leads to a large decrease of cobalt magnetic moment and T_{ord} in RCo₅. Hysteresis is observed for M(T) measurements in RCo_{5-x}Ga_x compounds. This hysteresis can be attributed to the domain wall pinning.

The introduction of iron into the $\text{RCo}_{5-x}\text{Ga}_x$ compounds increases the Curie temperature and causes the compensation point to shift towards lower temperatures (for example, TbCo₄Ga has $T_{\text{comp}} = 320$ K while TbCo₃FeGa has $T_{\text{comp}} = 290$ K).

The increase of iron content in the $\text{RCo}_{4-x}\text{FeGa}_x$ (x=1, 2) compounds enhances the magnetic 3d sublattice moment and decreases the axial 3d sublattice magneto-crystalline anisotropy.

References

- [2] Ch.D. Routsi, J.K. Yakinthos, E. Gamari-Seale, J. Magn. Magn. Mater. 102 (1991) 266.
- [3] Ch.D. Routsi, J.K. Yakinthos, E. Gamari-Seale, J. Magn. Magn. Mater. 116 (1992) 99.
- [4] Ch.D. Routsi, J.K. Yakinthos, E. Gamari-Seale, J. Magn. Magn. Mater. 116 (1992) 397.
- [5] Ch.D. Routsi, J.K. Yakinthos, S. Hatzivasiliou, J.K. Yakinthos, J. Tsoukalas, J. Alloys Compounds 10 (1994) 305.
- [6] Ch.D. Routsi, J.K. Yakinthos, H. Gamari-Seale, J. Magn. Magn. Mater. 137 (1994) 98.
- [7] O.M. Sinevich, Metallofiz. Ukrainian SSR 10 (1988) 116.
- [8] P. Schobinger-Papamantellos, D.P. Middleton, K.H.J. Bushow, J. Alloys Compounds 206 (1994) 189.
- [9] O. Moze, K.H.J. Buschow, Journal of Magnetism and Magnetic Materials 146 (1995) 111–116.
- [10] C.V. Thang, P.E. Brommer, J.H.P. Copla, E. Bruck, A.A. Menovsky, N.P. Thuy, J.J.M. Franse, J. Alloys Compounds 245 (1996) 100.
- [11] K. Yvon, W. Jeitschko, Parthe, J. Appl. Crystallogr. 10 (1977) 73.
- [12] M.A. Fremy, D. Gignoux, J.M. Moreau, D. Paccard, L. Paccard, J. Less-Common Metals 106 (1985) 251.
- [13] I. Felner, A. Grayevsky, N. Kaplan, J. Magn. Magn. Mater. 81 (1989) 179.
- [14] Ch.D. Routsi, J.K. Yakinthos, E. Ressouche, J. Alloys Compounds 256 (1997) 61.
- [15] R. Lemaire, Cobalt 32 (1966) 132.
- [16] H. Ido, K. Konno, T. Ito, S.F. Cheng, S.G. Sankar, W.E. Wallace, J. Magn. Magn. Mater. 104–107 (1992) 1361–1362.
- [17] F.M. Mulder, R.C. Thiel, J. Alloys Compounds 210 (1994) 255– 255.

 Ch.D. Routsi, J.K. Yakinthos, E. Gamari-Seale, J. Magn. Magn. Mater. 102 (1991) 275.